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We consider the doped Rokhsar-Kivelson quantum dimer model on the triangular lattice with one mobile
hole �monomer� at the Rokhsar-Kivelson point. The motion of the hole is described by two branches of
excitations: the hole may either move with or without a trapped Z2 vortex �vison�. We perform a study of the
hole dispersion in the limit where the hole-hopping amplitude is much smaller than the interdimer interaction.
In this limit, the hole without vison moves freely and has a tight-binding spectrum. On the other hand, the hole
with a trapped vison is strongly constrained due to interference effects and can only move via higher-order
virtual processes.
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I. INTRODUCTION

Quantum dimer models in two dimensions are an active
field of research due to their possible relevance to high-
temperature superconductivity1–3 and to frustrated
magnetism4 in the framework of the resonating-valence-bond
�RVB� construction.5 It was, however, realized that the RVB
liquid state of the original Rokhsar-Kivelson �RK� dimer
model on the square lattice is critical6 and does not provide a
stable phase. A search for a liquid with topological order7

continued with quantum dimer models on nonbipartite
lattices,8 in particular, on the triangular lattice. At a special
value of the coupling constants �the RK point�, the RK dimer
model on the triangular lattice is proven to have exponen-
tially decaying correlations,9,10 and a gapped excitation spec-
trum is found numerically.11 Furthermore, there is now con-
vincing numerical evidence that this gapped liquid phase is
stable and extends within a finite parameter range.12

In the RVB scenario of high-temperature superconductiv-
ity, the superconductivity emerges upon doping a liquid of
singlet bonds with charge carriers.5,13,14,27 Very early, it was
therefore proposed to study quantum dimer models contain-
ing monomers2,3 �see Refs. 16–20 for more recent studies�.
When analyzing a hole in the background of dimer or spin
liquids, one should take into account vortexlike excitations
inherent in topological liquids.3,15 These topological excita-
tions were dubbed visons in the context of the corresponding
Z2 gauge theory.21 There is now evidence that visons consti-
tute the gapped excitations of the undoped triangular-lattice
quantum dimer liquid.11,12 It is known that visons can bind to
holes and change their statistics.3,15

In this work, we study the properties of a single hole
excitation in the case of a doped triangular-lattice quantum
dimer model at the RK point and illustrate the hole-vison
binding. We find two branches of excitations: one for the
hole itself and the other for a hole-vison bound state. The
energy-momentum dispersion for both branches of excita-
tions is computed in the perturbative regime of small hole
hopping. The combined effects of lattice frustration and Z2
flux lead to a quadruply degenerate hole-vison branch and
reduced bandwidth. These results may have interesting im-
plications for RVB physics.

This Brief Report is organized in the following way. In
Sec. II, we introduce the model and show the existence of
two branches of excitations. In Sec. III, we calculate pertur-
batively the dispersion of the nonvison branch of the hole
excitation. In Sec. IV, the dispersion of the vison branch is
calculated. Finally, in Sec. V, we summarize and discuss our
results.

II. DOPED DIMER MODEL, TOPOLOGICAL SECTORS,
AND TWO BRANCHES OF EXCITATIONS

We consider the quantum dimer model on the triangular
lattice doped with mobile holes. We choose the simplest
form of the hole-hopping term which involves rearrangement
of one dimer. The Hamiltonian reads

�1�

where the first sum is performed over all three orientations of
rhombi and the second sum is over both up and down tri-
angles and over all three possible positions of the hole on the
triangle.

We consider the model �Eq. �1�� at the RK point, t=v
=1, in the sector with a single hole. At s=u�0, the Hamil-
tonian has the usual “supersymmetric” properties of the RK
point: its ground state is exactly known and given by the
equal-amplitude superposition of all possible states,2 and the
quantum mechanics can be mapped onto a classical stochas-
tic dynamics in imaginary time.22 We further consider the
hole term Hs as a perturbation in s�1, u�1. To simplify the
formulas, we assume u=s�0, but our results are trivially
extendable to u�s.

In the unperturbed Hamiltonian HRK, the position of the
hole x is a static parameter. We consider the hole on the
infinite lattice �or, equivalently, on a large finite lattice far
from the boundary�. In such a setup, there are two degenerate
ground states of HRK for each hole position. They correspond
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to two disconnected �topological� sectors H±�x� of the Hil-
bert space, characterized by the values ±1 of the vison op-
erator,

V�x� = �− 1�No. of dimers intersecting �x, �2�

for some contour �x connecting the hole position x to infinity
�in a finite system to the boundary�.3,15 The corresponding
ground states are given by the sums over all dimer coverings
in the respective topological sector and are denoted as �0

±�x�.
Note that while the labeling � of the two sectors H±�x�
depends on the choice of the contour �x, the sectors them-
selves do not. Changing the contour �x amounts to possible
interchanges H+�x�↔H−�x� and, therefore, �0

+�x�↔�0
−�x�.

This ambiguity reflects the Z2 degree of freedom in labeling
the topological sectors, and it will play an important role in
the motion of the hole with a trapped vison. Technically, this
Z2 gauge may be fixed by specifying �arbitrarily�, for each x,
a reference dimer covering which belongs to H+�x�.

The two topological sectors H±�x� differ by the parity of
the dimer intersection at infinity and hence are indistinguish-
able by any local operator �since all correlation functions are
short ranged in the RK model on the triangular lattice9,10�.
Therefore, for excitations obtained from the ground states by
local operators �in the vicinity of x�, one can establish a
one-to-one linear mapping between the states in H+�x� and in
H−�x�. Taking odd and even combinations of the correspond-
ing states �+�x�±�−�x�, we obtain the decomposition of the
Hilbert space into even and odd sectors He,o�x�. Those even
and odd sectors correspond to the nonvison and vison sectors
of excitations, respectively, introduced in Ref. 11.

The key observation for our discussion is that the Hamil-
tonian �Eq. �1�� preserves the decomposition into He,o�x� at
every point x. While it is obviously true for HRK and the
potential part of Hs, one can also easily check that the hop-
ping part of Hs does not have matrix elements between He�x�
and Ho�x�� for neighboring sites x and x�. Hence, the exci-
tations of the moving hole can also be classified into two
branches: the nonvison branch �contained in �xHe�x�� and
the vison branch �contained in �xHo�x��. This splitting into
even �nonvison� and odd �vison� branches is a generic fea-
ture of any perturbative mixing of topological sectors in
quantum dimer models.

III. NONVISON BRANCH

The energy spectrum of the nonvison branch can be easily
calculated to first order in the perturbative expansion in Hs.
We can fix the phases of all RK ground states �0

e�x�=�0
+�x�

+�0
−�x� by taking the linear combination of all dimer cover-

ings with the amplitude one �up to normalization�. Then, the
problem of the moving hole maps onto the tight-binding
model with the hopping amplitude,

t1 = − ��0
e�x��Hs��0

e�x��� , �3�

for nearest neighbors x and x� �here and in the following, we
always assume normalized states�. This amplitude may be
converted into an expectation value in the RK model with a
static hole,

�4�

where N1 and N3 are the numbers of dimer coverings with
one site and one three-site triangle removed, respectively.
The ratio N3 /N1 is well defined in the limit of the infinite
system and can be computed numerically with a suitable
method. We have calculated this coefficient with a Monte
Carlo simulation similar to that in Refs. 10 and 11 �using
clusters of toroidal geometry with up to 17�17 sites�, with
the result N3 /N1=0.229±0.001.

Taking into account the potential term in Hs and perform-
ing the Fourier transformation in x, the dispersion of the hole
without a vison takes the form

Ek = − 2t1�cos k1 + cos k2 + cos k3 − 3� , �5�

where k1, k2, and k3 are the projections of the vector k on the
three lattice directions �with k1+k2+k3=0�.

IV. VISON BRANCH

The hopping of a hole with a trapped vison is more com-
plicated. The phases of the odd-sector ground states, �0

o�x�
=�0

+�x�−�0
−�x�, cannot be synchronized invariantly for all x,

which reflect the frustration of the vison motion.11 The free-
dom of the Z2 gauge �the contours �x in Eq. �2� or, equiva-
lently, the reference dimer configuration for each x� corre-
sponds to the choice of the overall sign for the states in
Ho�x�.

Regardless of the chosen Z2 gauge, the hopping amplitude
vanishes to first order,

��0
o�x��Hs��0

o�x��� = 0, �6�

for nearest neighbors x and x�. This can be seen as the can-
cellation of the two types of hopping processes from x to x�,
corresponding to two possible dimer flips �Fig. 1�. Each of
those dimer flips maps each of H±�x� into one of H±�x��. The
change in topological sector depends on the chosen gauge,
but the correspondence between the two sectors H±�x� and
the two sectors H±�x�� is opposite for the two types of
flips.23 As a result, the corresponding processes connecting
two ground states �0

o�x� and �0
o�x�� exactly cancel each other.

A nontrivial hopping appears only to higher order in per-
turbation theory for some trajectories. The second-order hop-
ping amplitude,

x’ x x’x

FIG. 1. These two types of hopping processes set opposite cor-
respondences between the sectors H±�x� and H±�x�� and, therefore,
cancel each other in Eq. �6�.
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t2 = �
x�,n�0

1

En
��0

o�x��Hs��n
o�x�����n

o�x���Hs��0
o�x��� , �7�

involves excitations �n
o�x�� of HRK with energies En.

Similarly to the cancellation of the nearest-neighbor hop-
ping amplitude to first order in perturbation, one can show
the cancellation to second order of the hopping processes x
→x�→x� connecting nearest-neighbor and next-nearest-
neighbor sites �processes �a� and �b� in Fig. 2�. One can
verify that, in those cases, processes symmetric with respect
to the line xx� exactly cancel each other.

The only nontrivial hopping in the second order occurs
for trajectories x→x�→x� involving two links along the
same direction �i.e., for the on-site energy correction and for
the next-next-nearest-neighbor hopping, processes �c� and
�d� in Fig. 2�. The corresponding next-next-nearest-neighbor
hopping amplitude �Fig. 2�d�� to second order in perturbation
�Eq. �7�� may be expressed via dynamic correlation functions
in the RK model with a static hole at position x�,

t2 = 	
0

	

dt��0
o�x��Hse

−HRKtHs��0
o�x��� = s2	

0

	

dtI�t� , �8�

where

I�t� = ��0�x���Pxx�e
−HRKtPx�x���0�x��� , �9�

and

�10�

The dynamic correlation function I�t� is well defined in the
limit of infinite system size and does not depend on the to-
pological sector in this limit. It may be computed with a
classical Monte Carlo method as in Ref. 11. Using clusters of
toroidal geometry and up to 17�17 sites, we find 
0

	dtI�t�
=−1.51±0.08 �observe that it is negative�.

Note that the sign of t2 in Eq. �8� corresponds to a par-
ticular relative gauge choice at points x and x�: the reference
dimer coverings at x and x� are connected by two dimer flips
on opposite sides of the line xx�x� �Fig. 3�. One can show
that this local gauge convention for any two sites separated
by two lattice periods can be consistently extended to a glo-

bal gauge on the sublattice of such sites �with the period of
this sublattice equals twice that of the original lattice�. There
are four such sublattices �Fig. 3� and the hole-vison excita-
tion hops on each of them independently, without a possibil-
ity to cross over to another sublattice. The resulting disper-
sion relation is that of the tight-binding model with the
doubled lattice constant and the hopping amplitude given by
Eq. �8�,

Ek
�v� = − 2t2�cos 2k1 + cos 2k2 + cos 2k3� + 
0. �11�

The on-site energy 
0 is equal to that in the nonvison sector
in Eq. �5�. To leading order in s, it is given by 
0=6t1.

The hole-vison excitations with dispersion �11� are qua-
druply degenerate �by sublattice� for each value of k in the
Brillouin zone of the doubled lattice. While we have explic-
itly demonstrated this degeneracy to second order, it can be
extended to all orders of perturbation theory. In fact, this
degeneracy is determined by the symmetries of the original
Hamiltonian �Eq. �1�� in the vison sector and can thus be
promoted from a perturbative argument to the exact spec-
trum. The exact degeneracy can be proven using the transla-
tional invariance of the Hamiltonian, together with the sym-
metry under point inversion �rotation by �� and time
reversal. Physically, this degeneracy can be understood as the
cancellation of virtual processes for the flux-carrying excita-
tion on the frustrated triangular lattice.

Finally, let us note that, while our derivation of the hole-
vison spectrum was formally done at the RK point, its form
and degeneracy are the same in the whole liquid phase away
from the RK point �estimated to extend to the region 0.8
� v

t 1 in Ref. 12�, provided the hole hopping is small. Only
the numerical coefficients in the hopping amplitudes t1 and t2
get modified in this case. Furthermore, our results equally
apply when more than one hole is present in the system as
long as the holes are sufficiently far apart and do not interact
with each other.
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FIG. 2. The two trajectories of the hole exactly cancel each
other in the second order of the perturbation theory �Eq. �7�� for �a�
nearest-neighbor and �b� next-nearest-neighbor hoppings. The non-
vanishing second-order terms are �c� on-site and �d� next-next-
nearest-neighbor hoppings. (b)
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FIG. 3. �a� We fix the relative gauge at the next-next-nearest-
neighbor sites by relating the reference configurations in H+�x� and
H+�x�� via two consecutive dimer flips on opposite sides of the line
xx�x�. �b� The four sublattices connected by the hopping of the
hole-vison bound state. This composite excitation can only hop by
multiples of two lattice periods.
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V. SUMMARY

In this Brief Report, we have calculated the dispersion of
a single mobile hole in the RVB liquid phase of the doped
RK quantum dimer model on the triangular lattice. We find
two branches of excitations: one for the bare hole and the
other for a hole-vison bound state. The effective motion of
the hole-vison state is strongly modified by the Z2 flux asso-
ciated with the vison. Interference effects due to lattice frus-
tration reduce the bandwidth of this type of excitation and
lead to additional degeneracies. These are general properties,
which should be observed in any doped Z2 RVB liquid on
frustrated lattices.

In our specific model �Eq. �1��, the energy of a static �s
=0� hole-vison bound state equals that of a hole without a
vison. In other words, the vison does not cost any energy if
placed in a hole �while in the bulk, its energy is a finite
fraction of t, see Ref. 11�. In the limit of a small hopping
amplitude s, the energy of a static excitation is split, with the
bandwidth proportional to s for the bare hole and to s2 / t for

the hole-vison bound state. As a result, the two branches
intersect each other, with the minimum of energy �the ground
state� corresponding to the hole without a vison. For some k
in a region close to the boundary of the Brillouin zone, the
hole-vison bound state is lower in energy than the bare hole.
In a more general quantum dimer model �or in other RVB-
type systems�, however, one may imagine the situation
where the hole-vison bound state constitutes the ground state
�in our dimer model, this may be achieved, for example, by
adding ring exchange of dimers around a hole�. In such a
case, the doped holes spontaneously generate visons, which,
in turn, may lead to further interesting effects, e.g., the modi-
fication of the statistics of holes.3,15
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